
Combining Cat Images Using Image Morphing

Moses Ananta 13519076
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13519076@std.stei.itb.ac.id

Abstract—Cats are popular animals with over 40 to 70
different kinds of breeds. Although the number of cat breeds are
large, sometimes people wanted to have or atleast know a
different kind of cat that may not be available in those 40 to 70
listed breeds. This paper explores the use of image morphing
using Delaunay triangulation for combining two cat images to
produce a unique cat resulting from morphing two of the original
cats.

Keywords—image morphing, delaunay triangulation, cat

I. INTRODUCTION

Cats have a long history of domestication, with evidence
dating back thousands of years. They are widely considered to
be popular household pets due to their independent nature and
playful personalities. In fact, there are over 40 to 70 different
cat breeds globally [1][2], offering a wide range of options for
potential pet owners.

However, it is not uncommon for individuals to desire a cat
with specific characteristics that are not present in any existing
breed. In these cases, crossbreeding may be employed as a
means of creating a unique feline with desired traits. It is
important to note that while crossbreeding can offer the
possibility of specific characteristics, it may also carry
potential risks and drawbacks, such as an increased risk of
health issues or breeding problems. It is worth considering that
if the goal is just to satisfy the curiosity of the result of
combining two different cats, it's possible to use image
processing techniques such as image morphing to achieve the
result.

Image morphing is a computer graphics technique that
allows for the smooth transition of two images. Using this
technique,it's possible to create a single image that blends
elements from both of the original images. This can result in a
totally unique and visually appealing image that would be
impossible to generate using traditional approaches.

II. THEORETICAL BASIS

A. Delaunay Triangulation
Delaunay triangulation is a method of dividing a

two-dimensional space into a series of interconnected
triangles. In the context of image morphing, Delaunay
triangulation can be used to divide an image into a series of

interconnected triangles which could smooth the morphing
transition between two images.

Fig. 1. Example of a Delaunay Triangulation on a person’s face[3].

Performing Delaunay triangulation on an image[4] is done
by first selecting a set of key points in the image. These key
points should be selected in a way that reflects the overall
structure and features of the image.

Once the key points have been identified, Delaunay
triangulation can be used to divide the image into a series of
interconnected triangles. One such approach to compute the
Delaunay triangulation of an image is by iterative and
incremental process. It works by starting with an empty
triangulation and then adding each point to the triangulation
one at a time. As each point is added, the algorithm checks for
the existence of any triangles that contain the point within
their circumcircle. If such triangles are found, they are
removed and replaced with new triangles that connect the
point to the vertices of the original triangles. This process is
repeated until all of the points have been added to the
triangulation.

After all points have been triangulated, each resulting
triangle is connected to its neighboring triangles along its
edges. This creates a mesh of interconnected triangles that
covers the entire image. The resulting mesh can then be
transformed and deformed to match the corresponding

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



triangles in the other image, creating a smooth transition
between the two.

B. Image Morphing
Image morphing is a technique in computer graphics that

allows for the smooth transition between two images. The
general concept behind image morphing is the idea of creating
a series of intermediate images that smoothly transition
between the two original images. These intermediate images
are created by blending elements from the two original
images, with the amount of blending gradually increasing over
the course of the transition.

The first step to perform image morphing is to align the
two images so that they are properly positioned in relation to
each other. This can be done using image warping techniques,
which involve transforming the shape of one image to match
the other.

Once the images are aligned, the corresponding points in
the two images need to be identified. These are the points that
will be used to connect the triangles in the two images and
create the smooth transition between them. The triangles in
one image can then be transformed and deformed to match the
corresponding triangles in the other image, creating a smooth
transition between the two images.

To create a smooth and seamless transition between the
two images, the values of the pixels in the final combined
image can be interpolated between the values of the pixels in
the two original images. This can be done using image
interpolation techniques such as nearest neighbor
interpolation, bilinear interpolation, or bicubic interpolation.

III. EXPERIMENTS

A. General Experiment Process Outline
The general experiment process outline for image

morphing two cat images using Delaunay triangulation can be
as follows:

1) Select two cat images
The first step is to select the two cat images that will be

used for the image morphing. These images should be of high
quality and should clearly show the features and
characteristics of the cats. The images should also have the
same width and height sizes.

2) Identify key points
Once the images are aligned, the key points in the images

need to be identified. These key points will be used as the
vertices of the triangles in the Delaunay triangulation. Key
points should be selected in a way that reflects the overall
structure and features of the images, such as the tips of the
ears, the corners of the eyes, and the end of the nose.

3) Compute the Delaunay triangulation
Using the incremental algorithm that has been mentioned

before, the Delaunay triangulation of the key points can be
computed to create a series of interconnected triangles.

The resulting triangles can then be connected to form a
mesh, with each triangle connected to its neighboring triangles
along its edges. This creates a series of interconnected
triangles that cover the entire image

4) Transform the triangles:
The triangles in one image can then be transformed and

deformed to match the corresponding triangles in the other
image, creating a smooth transition between the two images.

5) Interpolate the values of the pixels in the final
combined image

To complete the experiment process, the values of the
pixels in the final combined image can be interpolated
between the values of the pixels in the two original images.
This can be done using image interpolation techniques such as
nearest neighbor interpolation, bilinear interpolation, or
bicubic interpolation.

6) Evaluate the resulting combined image and make any
necessary adjustments

Evaluate the resulting combined image and make any
necessary adjustments: Finally, the resulting combined image
can be evaluated and any necessary adjustments can be made
to optimize the quality of the image and ensure a smooth and
seamless transition between the two original images

B. Limitation
The limitation of the current experiment is that the process

of acquiring the key points in the cat images is done using a
machine learning model from the module pycatfd[5] that has
been pre-trained to identify the key points in the cat images.
The reason why the machine learning model is involved in
these experiments is that it enables for automatically
identifying the important key points in cat image without
manually doing so with human intervention. This means that
that there could be an error in which the machine learning
model failed or incorrectly identify the pixel coordinates
which are not the key points of the cat and because the
limitation of the model the model could only identify a few
parts of the cat which is the nose, the chin, the left and right
eye, the left and right parts of the each of the cat ears.

C. Experiments and Codes
For better understanding, below are the codes that are used

on the experiments.

1) Selecting two cat images

img_source_path = 'charteux.jpg'
img_target_path = 'cat_41.jpg'

im_src = plt.imread(img_source_path)
im_tgt = plt.imread(img_target_path)

The codes in this process make use of the python library
Matplotlib[], that is commonly used for graphics. The code
reads the two cat images that are 'charteux.jpg' and
'cat_41.jpg' using the function plt.imread.

2) Identifying key points in cat images

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



!rm source_anno.json
!rm target_anno.json
!rm clone https://github.com/marando/pycatfd.git
%cd pycatfd
os.system(f'python catfd.py -i ../{img_source_path} -j >>
../source_anno.json')
os.system(f'python catfd.py -i ../{img_target_path} -j >>
../target_anno.json')
%cd ..

The codes in this process make use of the python module
pycatfd from github that has been mentioned on the limitation
to identify the key points on the cat images.

3) Computing the Delaunay triangulation

def Delaunay(vertices, img_size):
# Convert the vertices to a numpy float32 array

and clip them to the image bounds
vertices = np.float32(vertices)
vertices = np.clip(vertices, [0, 0],

[img_size[1]-1, img_size[0]-1])

# Map the vertices to their indices
vertex_to_index = {tuple(v): i for i, v in

enumerate(vertices)}

# Compute the Delaunay triangulation and get the
list of triangles
image_rect = (0, 0, img_size[1], img_size[0])
triangulation = cv2.Subdiv2D(image_rect)
for v in vertices:

triangulation.insert(v)
triangles = triangulation.getTriangleList()

# Filter out triangles that are outside the
image bounds
triangles = [[int(x) for x in t] for t in

triangles if is_point_in_rect(t, image_rect)]

# Convert the triangle coordinates to indices
using the vertex-to-index mapping
triangles = [[vertex_to_index[tuple(t[i:i+2])]

for i in range(0,len(t)-1,2)] for t in triangles]

# Return the list of simplices (triangles)
return triangles

def is_point_in_rect(point, rect):
if point[0] < rect[0] or point[1] < rect[1] or

point[2] > rect[2] or point[3] > rect[3]:
return False

return True

The code in this process defines the function Delaunay for
computing Delaunay Triangulation on sets of key points in an
image. The Delaunay function takes in two arguments:
vertices and img_size.

The vertices argument is a list of key points that have been
identified before, and the img_size argument is a tuple
representing the size of an image which.

The function first converts the vertices list to a numpy
float32 array using np.float32 function, and then clips the
values to the bounds of the image using np.clip so that there
would be no out-of-bound points. Next, the function creates a
mapping of each vertex to its index in the vertices list, using a
dictionary. The reason the mapping is needed is so the
triangulation result that would be returned is not in point
coordinates format but point index.

The function then creates a Subdiv2D object representing
the image bounds and inserts each vertex into the object. It
then retrieves the list of triangles from the Subdiv2D object.
The function then filters out any triangles that are outside the
bounds of the image, and converts the coordinates of the
remaining triangles to indices using the vertex-to-index
mapping. Finally, the function returns the list of triangles.

The is_point_in_rect function takes in a point and a
rectangle, represented as lists of coordinates, and returns True
if the point is inside the rectangle and False otherwise. This
function is used to filter out triangles that are outside the
bounds of the image. It is defined as a helper function.

4) Transform and interpolate the images

def morph_images(im1, im2, points1, points2,
alpha):
# Convert the images to floating point arrays
im1 = np.float32(im1)
im2 = np.float32(im2)

points1 =  np.float32(points1)
points2 =  np.float32(points2)
# Compute the Delaunay triangulation of the

points
tri = Delaunay(points2,im1.shape)

# Initialize the intermediate image with the
same size and type as the input images
im_intermediate = np.empty_like(im1)
im_intermediate.fill(0)

# Iterate over the simplices (triangles) of the
Delaunay triangulation
for s in tri:
# Compute the affine transformation matrix

that maps the triangle in the first image to the
corresponding triangle in the second image

affine_matrix = cv2.getAffineTransform(
points1[s],  points2[s])

# Warp the triangle from the first image to
the intermediate image using the affine

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



transformation matrix
cv2.fillConvexPoly(im_intermediate,

np.array(points1[s], 'int32'), (1, 1, 1),
cv2.LINE_AA, 0)

cv2.warpAffine(im1 ,affine_matrix,
im_intermediate.shape[:2],im_intermediate,
cv2.INTER_LINEAR,
borderMode=cv2.BORDER_REFLECT_101)

# Warp the triangle from the second image to
the intermediate image using the inverse of the
affine transformation matrix

cv2.fillConvexPoly(im_intermediate,
np.array(points2[s], 'int32'), (1, 1, 1),
cv2.LINE_AA, 0)

cv2.warpAffine(im2, affine_matrix,
im_intermediate.shape[:2],
im_intermediate,cv2.WARP_INVERSE_MAP+cv2.INTER_LIN
EAR,borderMode=cv2.BORDER_REFLECT_101)

# Blend the intermediate image with the first
and second images using the specified alpha value
im_output = add_weighted(im1, 1-alpha,

im_intermediate, alpha, 0)

return im_output

The code in this process defines the function
morph_images for transforming the triangle from the
Delaunay triangulation process and interpolating the images
based on the given alpha value . that takes in five arguments:
two images (im1 and im2), two lists of points (points1 and
points2), and a float value alpha

The function begins by converting the images and points to
floating point arrays using the np.float32 function. It then
computes the Delaunay triangulation of the points in points2
using the Delaunay function, passing in points2 and the shape
of im1 as arguments.

Next, the function initializes an empty image called
im_intermediate with the same size and type as im1 which
functions as a placeholder for keeping the transform result. It
then iterates over the triangles in the Delaunay triangulation,
and for each triangle it computes an affine transformation
matrix that maps the triangle in points1 to the corresponding
triangle in points2, warps the triangle from im1 to
im_intermediate using the affine transformation matrix, and
warps the triangle from im2 to im_intermediate using the
inverse of the affine transformation matrix.

Finally, the function blends the intermediate image
im_intermediate with the first and second images using the
specified alpha value, and returns the resulting image.

IV. RESULTS

Following the aforementioned processes, this is the result.

1) Selecting two cat images

Fig. 2. Two selected cat images

2) Identifying the key points

Fig. 3. Key points as black dots in cat images

3) Triangulate the key points

Fig. 4. Triangulation Result

4) Morph the image

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



Fig. 5. Image morphing result with alpha value 0.62

Based on the result that has been shown, the resulting
image could blend two cat images well although there is some
of the image artifact that could be seen as well.

Although the above experiment blended the cat photos
well. Sometimes not all images can be blended well such as
the example below.

1) Selected cat images

Fig. 6. Selected cat for the second experiment

Fig. 7. Triangulation result

Fig. 8. Image morphing result with alpha value 0.49

From the result that has been shown on Fig. 8., the
morphing results poorly and the images are miss aligned.
When comparing this image which use delaunay triangulation
morphing and the image without the triangulation below,

Fig. 9. Image morphing without using delaunay triangulation

It can be seen that the resulting image is more natural. One
of the factors why the resulting image from image morphing
with delaunay triangulation is miss aligned is because of the
incorrect warping of the delaunay triangulation which is
caused by the poorly placed key points on the image. As a
result, the warping algorithm tried to warp the image to the
poorly placed key points which resulted in a poorly aligned
morphed image.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



V. CONCLUSION

Based on the experiments, image morphing using
Delaunay triangulation method can combine images from 2
different cats. However the resulting image sometimes is
miss-aligned due to the key points identifier model assigning
the key points in the wrong coordinates.

To further improve the morphing result, key points may
have to be manually assigned to guarantee that the key points
coordinated are rightly assigned or use a better model. Also
increasing the number of key points may further smoothen the
interpolation process. And finally, to reduce the artifact from
combining 2 images, some algorithm like gradient-based
blending may be integrated.

REFERENCES

[1] ]“Breeds – The Cat Fanciers’ Association, Inc,” cfa.org.
https://cfa.org/breeds/

[2] S. User, “Browse All Breeds,” tica.org.
https://tica.org/breeds/browse-all-breeds

[3] “Face Morphing,” devendrapratapyadav.github.io.
https://devendrapratapyadav.github.io/FaceMorphing/.

[4] “Morphing in Two Dimensions: Image Morphing Magdil Delport,”
2007. [Online]. Available:
https://core.ac.uk/download/pdf/37321395.pdf

[5] ashley, “pycatfd,” GitHub, Dec. 14, 2022.
https://github.com/marando/pycatfd.

[6]  Matplotlib, “Matplotlib: Python plotting — Matplotlib 3.1.1
documentation,” Matplotlib.org, 2012. https://matplotlib.org/

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Desember 2022

Moses Ananta 13519076

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023

https://devendrapratapyadav.github.io/FaceMorphing/

